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Abstract

We establish sparse Hanson–Wright inequalities for quadratic forms of sparse α-sub-
exponential random vectors with exponent parameter α ∈ (0, 2]. In the regime 0 < α ≤ 1
we derive a refined inequality that is optimal in several canonical models. These results ex-
tend the classical Hanson–Wright bound to the sparse setting. Illustrative applications include
covariance matrix estimation with incomplete observations, low-rank matrix approximation
under the maximum norm with sparsified sketches, and concentration inequalities for sparse
α-sub-exponential random vectors.

1 Introduction

The Hanson-Wright inequality quantifies the concentration of a random quadratic form around
its mean. Introduced in the 1970s [14], it is now a standard device for covariance estimation,
random-matrix analysis, empirical-process bounds and high-dimensional regression.

Let ξ = (ξ1, · · · , ξn)⊤ be a random vector with independent centered entries and A =
(aij)n×n be a fixed matrix. The Hanson-Wright inequality is to explore the concentration proper-
ties of the following quadratic random variables

SA(ξ) := ξ⊤Aξ =
∑
i,j

aijξiξj .

A well-known result, proved by Hanson and Wright [14], claims that if ξi are independent centered
2-sub-exponential (sub-gaussian) random variables such that maxi ∥ξi∥Ψ2 ≤ L, then for t ≥ 0
(the following version was provided in [30])

P
{
|SA(ξ)− ESA(ξ)| ≥ t

}
≤ 2 exp

(
− cmin

{ t2

L4∥A∥2F
,

t

L2∥A∥l2→l2

})
, (1.1)
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where ∥ · ∥F and ∥ · ∥l2→l2 are the Frobenius norm and the spectral norm of a matrix respectively.
Recall that a random variable η1 is α-sub-exponential if satisfying

P{|η1| ≥ t} ≤ 2 exp
(
− tα

Kα

)
, t ≥ 0.

Its α-sub-exponential norm is defined as

∥η1∥Ψα := inf
{
t > 0 : E exp

( |η1|α
tα
)
≤ 2
}
.

There is a lot of work dedicated to extending the classical Hanson-Wright inequality (1.1)
to more general cases. For example, assume that ξ1, · · · , ξn are independent centered α-sub-
exponential variables and satisfy maxi ∥ξi∥Ψα ≤ L(α). When 1 ≤ α ≤ 2, Adamczak and Latała
[2] proved for t ≥ 0 (see also [3])

P{|SA(ξ)− ESA(ξ)| ≥ L(α)2t} ≤ 2 exp(−c(α)f1(t)), (1.2)

where

f1(t) = min
{( t

∥A∥F

)2
,

t

∥A∥l2→l2

,
( t

∥A∥lα∗ (l2)

)α
,( t

∥A∥l2→lα∗

) 2α
2+α

,
( t

∥A∥lα→lα∗

)α
2
}
. (1.3)

One can refer to (1.9) below for the definitions of the matrix’s norms and α∗ = α/(α− 1). When
0 < α ≤ 1, Kolesko and Latała [21] proved for t ≥ 0 (see also [13])

P{|SA(ξ)− ESA(ξ)| ≥ L(α)2t} ≤ 2 exp(−c(α)f2(t)), (1.4)

where

f2(t) = min
{( t

∥A∥F

)2
,

t

∥A∥l2→l2

,
( t

∥A∥l2→l∞

) 2α
2+α

,
( t

∥A∥∞

)α
2
}
. (1.5)

As we have seen above, the Hanson-Wright inequalities (1.2) and (1.4) are quite intricate. By
evaluating the family of norms used therein, Sambale [31] obtained a simplified version. This
simplified version is not only easily calculable but also sufficient for many applications (see [31]
for details). In particular, Sambale proved for 0 < α ≤ 2 and t ≥ 0

P
{
|SA(ξ)− ESA(ξ)| ≥ t

}
≤2 exp

(
− c(α)min

{ t2

L(α)4∥A∥2F
,
( t

L(α)2∥A∥l2→l2

)α/2})
. (1.6)

Motivated by the covariance estimation problem in the matrix variate model, Zhou [36] showed
a sparse Hanson-Wright type inequality for sub-gaussian random variables. In particular, as-
sume that {ξi = δi · ζi, 1 ≤ i ≤ n} is a sequence of independent random variables, where
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δi ∼ Bernoulli(pi) (that is, taking values 0, 1 with probability 1− pi and pi respectively) and ζi is
a centered sub-gaussian variable independent of δi. Zhou proved for t ≥ 0

P
{
|SA(ξ)− ESA(ξ)| ≥ t

}
≤ 2 exp

(
− cmin

{ t2

L4γ1(A)
,

t

L2∥A∥l2→l2

})
, (1.7)

where L = maxi ∥ζi∥Ψ2 and γ1(A) =
∑

k a
2
kkpk +

∑
i ̸=j a

2
ijpipj .

Recently, He, Wang and Zhu [15] established sparse Hanson-Wright type inequalities in a
more general setting. Specifically, let {ξi = δi · ζi, 1 ≤ i ≤ n} be a sequence of independent
random variables, where δi ∼ Bernoulli(pi) and ζi is a centered α-sub-exponential variable inde-
pendent of δi, 1 ≤ i ≤ n. [15, Corollary 1] showed that for α > 0 and t ≥ 0

P
{
|SA(ξ)− ESA(ξ)| ≥ t

}
≤2 exp

(
− c(α)min

{ t2

L(α)4γ1(A)
,

t

L(α)2γ2(A)
,
( t

L(α)2∥A∥∞

)min{α
2
, 1
2
}})

, (1.8)

where L(α) = maxi ∥ζi∥Ψα , ∥A∥∞ = maxij |aij |, and

γ2(A) = max
i

{ ∑
j:j ̸=i

|aij |pj ,
∑
j:j ̸=i

|aji|pj , |aii|
}
.

The work in [15] further extends to sparse versions of Bernstein and Bennett type inequalities.
In addition to the works mentioned above, there are numerous other papers that delve into the

Hanson-Wright inequality with sparse structure. We refer interested readers to [8, 12, 16, 28, 32,
33, 35, 37] and the references therein for further exploration.

Notation Given a fixed vector x = (x1, · · · , xn)⊤ ∈ Rn, denote by ∥x∥r = (
∑

i |xi|r)1/r the lr
norm. Use ∥ξ∥Lr = (E|ξ|r)1/r as the Lr norm of a random variable ξ. Let A = (aij) be an m×n
matrix. We use the following notations of the matrix norms:

∥A∥F =

√∑
i,j

|aij |2, ∥A∥∞ = max
i,j

|aij |,

∥A∥lr(l2) = (
∑
i≤m

(
∑
j≤n

|aij |2)r/2)1/r, (1.9)

∥A∥lr1→lr2
= sup{|

∑
i,j

aijxjyi| : ∥x∥r1 ≤ 1, ∥y∥r∗2 ≤ 1},

where 1 ≤ r1, r2 < ∞ and r∗2 = r2/(r2 − 1). Indeed, ∥A∥l2→l2 is the spectral norm of A and
∥A∥l1→l∞ = ∥A∥∞.

Let ξ1, · · · , ξn be a sequence of random variables and f : Rn → R be a measurable func-
tion. Then, Eξi1 ,··· ,ξisf(ξ1, · · · , ξn) means only taking expectation with respect to random vari-
ables ξi1 , · · · , ξis , where {i1, · · · , is} ⊂ {1, · · · , n}. Denote ξ ∼ Ws(α) when ξ is a sym-
metric Weibull variable with the scale parameter 1 and the shape parameter α. Specifically,
− logP{|ξ| > x} = xα, x ≥ 0.

Unless otherwise stated, denote by C,C1, c, c1, · · · the universal constants independent of any
parameters and the dimension n. Besides, let C(δ), c(δ) · · · be the constants depending only on
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the parameter δ. Their values can change from line to line. For convenience, we say f ≲ g if
f ≤ Cg for some universal constant C. We write f ≲δ g if f ≤ C(δ)g for some constant C(δ).
Besides, we say f ≍ g if f ≲ g and g ≲ f , so does f ≍δ g.

Organization of the paper The rest of the paper is organized as follows. In the remaining part
of Section 1, we will first present our main results. Then, we will draw comparisons between our
results and existing ones to highlight the novelties and improvements. To conclude Section 1, we
will pose two open questions that warrant further exploration.

In Section 2, we give three applications of our concentration inequalities. The applications
include: (i) covariance matrix estimation from partially observed data; (ii) low-rank matrix ap-
proximation with sparsification; and (iii) concentration phenomena for sparse α-sub-exponential
random vectors.

Section 3 is dedicated to introducing several key lemmas. These lemmas cover aspects such as
the relationship between tails and moments, the decoupling inequality, the contraction principle,
and concentration inequalities. They serve as fundamental tools for the subsequent theoretical
derivations.

We prove our main results in Section 4 and our applications in Section 5. In the appendix, we
offer proofs for Proposition 1.1, Theorem 5, Corollary 1, and Lemma 3.8.

1.1 Main results

This paper concentrates on the sparse Hanson-Wright inequalities in α-sub-exponential random
variables, 0 < α ≤ 2. Our first main result in this regime reads as follows:

THEOREM 1. Assume that {δi, 1 ≤ i ≤ n} and {ζi, 1 ≤ i ≤ n} are two independent sequences
of random variables, where δi ∼ Bernoulli(pi) are independent and ζi are independent centered
α-sub-exponential random variables. Consider a random vector ξ = (ξ1, · · · , ξn) with ξi = δi ·ζi.
Let A = (aij)n×n be a symmetric fixed matrix. Then for 0 < α ≤ 2 and t ≥ 0

P{|ξ⊤Aξ − Eξ⊤Aξ| ≥ L(α)2t}

≤2 exp

(
−c(α)min

{
t2∑

k a
2
kkpk +

∑
i ̸=j a

2
ijpipj

,

(
t

∥A∥l2→l2

)α/2
})

,

where L(α) = maxi ∥ζi∥Ψα and c(α) is a positive constant depending only on α.

REMARK 1.1 (Comparison of Theorem 1 with Hanson-Wright inequalities in [31, 36]). (i). When
p1 = · · · = pn = 1, i.e., δi = 1 for 1 ≤ i ≤ n, Theorem 1 recovers Sambale’s result [31], see
(1.6). (ii). When α = 2, Theorem 1 recovers the sparse Hanson-Wright inequality for sparse
sub-Gaussian random vectors obtained by Zhou in [36], see (1.7).

Moreover, when only considering the case 0 < α ≤ 1, we have the following more refined
result.

THEOREM 2. In the same setting of Theorem 1, we have for 0 < α ≤ 1 and t ≥ 0

P{|ξ⊤Aξ − Eξ⊤Aξ| ≥ L(α)2t} ≤ 2 exp(−c(α)f(t)),
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where L(α) = maxi ∥ζi∥Ψα , c(α) is a positive constant depending only on α, and

f(t) = min
{ t2∑

k a
2
kkpk +

∑
i ̸=j a

2
ijpipj

,
t

∥(aij
√
pipj)n×n∥l2→l2

,

( t

maxi
(∑

j a
2
ijpj
)1/2) 2α

2+α
,
( t

∥A∥∞

)α
2
}
.

REMARK 1.2 (Theorem 2 improves Theorem 1). Theorem 1 for the case 0 < α ≤ 1 can be
derived from Theorem 2. Indeed, a direct integration of the tail probability in Theorem 2 yields
that ∥∥∥ξ⊤Aξ − Eξ⊤Aξ

∥∥∥
Lr

≲αr
2/α∥A∥∞ + r1/2+1/αmax

i

(∑
j

a2ijpj

)1/2
+ r∥(aij

√
pipj)∥l2→l2 +

√
r
(∑

k

a2kkpk +
∑
i ̸=j

a2ijpipj

)1/2
≲αr

2/α∥A∥l2→l2 +
√
r
(∑

k

a2kkpk +
∑
i ̸=j

a2ijpipj

)1/2
,

where we use the following fact

max
i

(∑
j

a2ijpj

)1/2
≤ ∥A∥l2→l∞ ≤ ∥A∥l2→l2 ,

∥(aij
√
pipj)∥l2→l2 ≤ ∥A∥l2→l2 , ∥A∥∞ ≤ ∥A∥l2→l2 .

Then, one can obtain Theorem 1 by Lemma 3.1 below.

REMARK 1.3 (Comparison of Theorem 2 with Hanson-Wright inequalities in [15, 21]). (i). When
p1 = · · · = p2 = 1, Theorem 2 recovers the Hanson-Wright inequality (1.4) due to Kolesko and
Latała in [21].

(ii). Note that for r ≥ 1,

r
1
2
+ 1

α max
i

(
∑
j

a2ijpj)
1/2 ≤ (r1/α∥A∥1/2∞ ) · (r1/2max

i
(
∑
j

|aij |pj)1/2)

≤ 1

2
r2/α∥A∥∞ +

1

2
rmax

i

∑
j

|aij |pj

and

∥(aij
√
pipj)∥l2→l2 ≤ max

i

∑
j

|aij |
√
pipj ≤ Kmax

i

∑
j

|aij |pj ,
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where K = K(p1, · · · , pn) = max pi/min pj . Hence, Theorem 2 yields that∥∥∥ξ⊤Aξ − Eξ⊤Aξ
∥∥∥
Lr

≲αr
2/α∥A∥∞ + r1/2+1/αmax

i

(∑
j

a2ijpj

)1/2
+ r∥(aij

√
pipj)∥l2→l2 +

√
r
(∑

k

a2kkpk +
∑
i ̸=j

a2ijpipj

)1/2
≲αr

2/α∥A∥∞ +Krmax
i

∑
i

|aij |pj +
√
r
(∑

k

a2kkpk +
∑
i ̸=j

a2ijpipj

)1/2
.

Then, by Lemma 3.1 below, we deduce (1.8) from Theorem 2 but with an extra factor K.

Note that, when A is a diagonal-free matrix, the decay rate of the Hanson-Wright inequality
(1.4) is optimal in the sense that, there exist independent centered α-sub-exponential random
variables η1, · · · , ηn such that a matching lower bound holds. See Proposition 1.1 for details and
its proof is given in Appendix A.

PROPOSITION 1.1 (Optimality of Theorem 2 when p1 = · · · = p2 = 1). Let η1, · · · , ηn
i.i.d.∼

Ws(α) and A be a symmetric diagonal-free matrix. Then for 0 < α ≤ 1 and t ≥ 0

P{|η⊤Aη − Eη⊤Aη| ≥ t} ≥ C(α) exp(−c(α)f2(t)),

where η = (η1, · · · , ηn)⊤, C(α), c(α) are positive constants depending only on α, and f2(t) is
defined in (1.5).

REMARK 1.4 (Generalization to general A). Theorems 1 and 2 assume that the matrix A is
symmetric. This assumption was made primarily for the convenience of presentation. Indeed, the
above results can be extended to general square matrices. The only modification required is that
in many places, A should be replaced by 1

2(A+A⊤).

1.2 Disscussion

In this section, we assume that {δi, 1 ≤ i ≤ n} is a sequence of independent random variables with
δi ∼ Bernoulli(pi) and {ζi, 1 ≤ i ≤ n} is a sequence of independent centered α-sub-exponential
random variables. Assume δi’s are independent of ζi’s. Denote by ξ = (ξ1, · · · , ξn) the random
vector with ξi = δi · ζi. Let A = (aij)n×n be a symmetric fixed matrix and a = (a1, · · · , an)⊤ be
a fixed vector. Set L(α) = maxi ∥ζi∥Ψα . We mention the following two open questions:

1. For 1 ≤ α ≤ 2 and t > 0, it holds (see Theorem 6.1 in [3])

P
{∣∣ n∑

i=1

aiζi
∣∣ ≥ t

}
≤ 2 exp

(
− c(α)min

{ t2

L(α)2∥a∥22
,
( t

L(α)∥a∥α∗

)α})
and

P{|ζ⊤Aζ − Eζ⊤Aζ| ≥ L(α)2t} ≤ 2 exp(−c(α)f2(t)),
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where α∗ = α/(α− 1) and f1(t) is defined in (1.3). How to obtain upper bounds for

P
{∣∣ n∑

i=1

aiξi
∣∣ ≥ t

}
, P{|ξ⊤Aξ − Eξ⊤Aξ| ≥ t}

which recover the above results when δ1 = · · · δn = 1 is an interesting question.

2. In this paper, we give upper bounds for the linear and quadratic forms of sparse α-sub-
exponential random vectors:

∥∥ n∑
i=1

aiξi
∥∥
Lr
, ∥ξ⊤Aξ − Eξ⊤Aξ∥Lr .

Investigating their lower bounds is an interesting question, which may help us establish the
optimal bounds for the above quantities.

2 Applications

In this section, we present several applications in covariance estimation, randomized low-rank
approximation, and concentration of random vectors. Sparsity can naturally come from the fact
that a high-dimensional random vector is sparse, for example, when the elements of the vector are
missing at random, or when we intentionally sparsify the vector to speed up computation.

2.1 Covariance matrix estimation under missing observations

Concentration properties of the sample covariance matrix play a central role in numerous high-
dimensional inference tasks, including sparse PCA, graphical model selection, discriminant anal-
ysis, and high-dimensional regression [22].

We consider the problem of estimating the covariance matrix of a random vector from i.i.d.
samples, where each vector is observed with entries missing independently. In the sub-Gaussian
setting, this problem was first analyzed in [26], motivated by applications in climate science,
gene expression, and cosmology, where an unbiased estimator derived from the sample covari-
ance matrix was proposed. The corresponding error bounds were later sharpened in [19]. More
recently, under the L4–L2 moment equivalence assumption, Abdalla [1] introduced an estimator
that achieves both optimal dependence on the missingness parameter p and the minimax optimal
convergence rate under the spectral norm. However, this estimator is computationally intractable
in practice.

Beyond these contributions, a number of related results on covariance estimation with missing
data have appeared in the literature, primarily for sub-Gaussian random vectors; see, for example,
[6, 29, 27, 20, 36, 37]. In this work, we go beyond the sub-Gaussian framework and develop
concentration results for covariance estimation under heavy-tailed distributions with missing ob-
servations.

We state our assumptions as follows:
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ASSUMPTION 1 (Data assumption). Assume that the entries of ξ ∈ Rm are independent, centered,
α-sub-exponential random variables with α ∈ (0, 2] with variance 1. Assume

Y = Bξ

where B is a fixed d×m matrix and BB⊤ = Σ.

This means the data vector Y satisfies a multivariate model [10, 6] as a linear transformation
of ξ(s), which is a common assumption in high-dimensional statistics. We assume the data vector
is observed partially with missing entries, defined as follows:

ASSUMPTION 2 (Missing at random). We observe n independent samples X(1), . . . , X(n) ∈ Rd,
where each

X(s) = δ(s) ◦ Y (s),

where

• δ(s) ∈ {0, 1}d are i.i.d. Bernoulli random vectors with independent entries δ(s)i ∼ Bernoulli(pi),
i = 1, . . . , d;

• Y (s) ∈ Rm are i.i.d. copies of a random vector Y .

The goal is to estimate BB⊤ = Σ. A natural and unbiased estimator of Σ is defined by

Σ̂jk =


1

npjpk

∑n
s=1X

(s)
j X

(s)
k , j ̸= k,

1
npj

∑n
s=1 (X

(s)
j )

2
j = k.

This estimator is called the inverse probability weighting (IPW) estimator [20, 11, 6, 27]. When
Y is a sub-Gaussian random vector, the element-wise deviation of the IPW estimator has been
considered in [20, 26, 27].

As soon as the dimension d exceeds the sample size n, however, the sample covariance matrix
ceases to be consistent in the operator norm. A standard remedy is to restrict attention to the “sig-
nificant” coordinates, i.e. to work with a sparse sub-vector. Motivated by this practice we analyse
the maximum k-sparse sub-matrix operator norm of the covariance matrix [22]. In particular, we
would like to bound the following quantity:

RIPn(k) := sup
θ∈Rd,∥θ∥2≤1

∥θ∥0≤k

∣∣∣θ⊤(Σ̂− Σ)θ
∣∣∣ .

This norm is also of importance in high-dimensional linear regression due to its connections to
the restricted isometry property (RIP) [7] and the restricted eigenvalue (RE) condition [4]. When
k = 1, RIPn(1) is ∥Σ̂− Σ∥∞ and when k = d, RIPn(1) is the operator norm ∥Σ̂− Σ∥l2→l2 .

Before giving the main result of this subsection, we introduce some notations. For the vectors
p = (p1, · · · , pd)⊤ and θ = (θ1, · · · , θd)⊤, the vector θ ◦ 1

p is defined as follows:

θ ◦ 1

p
= (θ1/p1, · · · , θd/pd)⊤.
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We define the matrix Aθ,p ∈ Rd×d as follows:

(Aθ,p)jk =


θ2j/pj , j = k,

θjθk
pjpk

, j ̸= k.

THEOREM 3. Assume that maxi ∥ξi∥Ψα ≤ 1. For any t ≥ 0, with probability at least 1− 2e−t,

RIPn(k) ≲α
(t+ k log(48ed/k))1/2√

n
sup
θ∈Ω

(
E∥B⊤Diag(δ(1))Aθ,pDiag(δ(1))B∥2F

)1/2
+
((t+ k log(48ed/k))3/4

n3/4
+

(t+ k log(48ed/k))2/α

n

)
×

∥B∥l2→l2 · ∥Diag(
√
p1, · · · ,

√
pd) ·B∥F + ∥B∥l2→l2) · sup

θ∈Ω
∥θ ◦ 1

p
∥22,

where Ω = {θ ∈ Rd : ∥θ∥2 ≤ 1, ∥θ∥0 ≤ k}.

REMARK 2.1 (Comparison with [23]). When all pi = 1, [23] studied covariance estimation
for marginally sub-Weibull random vectors. Compared with their result, Theorem 3 removes the
extra log n factor of the t2/α term, and extends the analysis to the missing-observation setting;
however, our assumption on the data Y is stronger, whereas [23] does not require X to follow a
multivariate model.

REMARK 2.2. (i). By Propositions 5.1 and 5.2 below, we have(
E∥B⊤Diag(δ(1))Aθ,pDiag(δ(1))B∥2F

)1/2
≲∥B∥l2→l2 · (∥Diag(

√
p1, · · · ,

√
pd) ·B∥F + ∥B∥l2→l2) · ∥θ ◦

1

p
∥22.

(ii). An exact calculation of E∥B⊤Diag(δ(1))Aθ,pDiag(δ(1))B∥2F is given in the Appendix E.

2.2 Low-rank approximation with sparsified sketches

Low-rank approximation is fundamental in data analysis, signal processing, and machine learning.
Many large data matrices, such as user–item ratings, gene expression profiles, or kernel matrices,
are approximately low-rank due to latent factors or redundancy [34]. Exploiting this structure
enables efficient algorithms and reduces storage and computation in downstream tasks.

Recent work [34, 5] shows that large matrices with small spectral norm admit nearby low-
rank approximations in the maximum norm, providing uniform entrywise guarantees. Building on
this perspective, we propose a randomized construction using sparsified random vectors. Instead
of dense Gaussian sketches, we use probes of the form δ ◦ ξ, where δ is a Bernoulli mask and
ξ is sub-Gaussian. This reduces storage and matrix–vector costs while introducing dependence
on the missingness probability p. Our sparse Hanson–Wright inequalities yield sharp analysis,
showing that sparsification preserves robust max-norm guarantees with explicit dependence on
matrix coherence.
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Sparsified sketches have also appeared in stochastic trace estimation [18], analyzed via sparse
Hanson–Wright inequalities [36]. Our results extend this principle to low-rank approximation,
demonstrating both computational savings and theoretical control.

Before stating the main result in this subsection we fix notation. For a rank-k matrix X ∈
Rm×n with thin SVD X = UΣV ⊤, the column and row-space coherences are

µcol(X) =
m

k
max
i∈[m]

∥U⊤ei∥22, µrow(X) =
n

k
max
j∈[n]

∥V ⊤ẽj∥22,

where ei∈Rm and ẽj∈Rn are the standard basis vectors.
We propose a randomized algorithm to construct a low-rank approximation of a rank-k matrix

X given in Algorithm 1. The analysis of Algorithm 1 uses the sparse Hanson-Wright inequality
for a sparse sub-Gaussian random vector.

Algorithm 1 Low rank approximation with sparsified sketches

Input: A rank-k matrix X ∈ Rm×n, target rank r, sparsity parameter p.
1: Compute singular value decomposition X = UΣV ⊤ where U ∈ Rm×k,Σ ∈ Rk×k and

V ∈ Rn×k. Define

Ũ = UΣ1/2 = [ũ⊤1 , · · · , ũ⊤m]⊤, Ṽ = V Σ1/2 = [ṽ⊤1 , · · · , ṽ⊤n ]⊤.

2: Let Q = [Q1, · · · , Qr] ∈ Rk×r be a random matrix with independent copies of r−
1
2 δ ◦ ξ,

where δ ∼ Bernoulli(p) and ξ is a centered sub-gaussian random variable satisfying ∥ξ∥Ψ2 ≤
1 and Eξ2 = 1. The random variable δ is independent of ξ.

Output: Matrix Y ∈ Rm×n such that Yij = 1
p ũiQQ⊤ṽ⊤j .

THEOREM 4. Assume that m,n, k ∈ N satisfies k ≤ min{m,n}. Let 0 < p ≤ 1 and ε > 0.
Then for every matrix X ∈ Rm×n of rank k and any constant r such that

k ≥ r ≥ C1 log
mn

η
·max{ p

ε2
,
1

ε
},

then Algorithm 1 outputs a matrix Y ∈ Rm×n of rank no more than r such that with probability
at least 1− η,

∥X − Y ∥∞ ≤ kε

p
√
mn

√
µcolµrow · ∥X∥l2→l2 ,

where µcol and µrow are the coherence of the column and row spaces of X .

REMARK 2.3. Recently, Budzinskiy [5, Theorem 3.4] proved that under the condition k ≥ r ≥
C1 logmn

ε2
, there exists a matrix Y ∈ Rm×n of rank no more than r such that

∥X − Y ∥∞ ≤ kε√
mn

√
µcolµrow · ∥X∥l2→l2 .
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Relative to Budzinskiy’s theorem, Theorem 4 widens the admissible range of r at the cost of a
looser error bound. In practice, we can trade off rank versus accuracy according to the task
at hand. Our proof shows that Y can be constructed based on a significantly sparser matrix
Q, yielding substantial savings in storage and matrix–vector products compared with the dense
approximation proposed in [5].

2.3 Sparse α-sub-exponential concentration

In this subsection we establish a concentration inequality for random vectors with independent
α-sub-exponential coordinates; such bounds are widely used [30]. The derivation is standard, so
the proof is relegated to the appendix.

THEOREM 5. Assume that {δi, 1 ≤ i ≤ n} and {ζi, 1 ≤ i ≤ n} are two independent se-
quences of random variables, where δi ∼ Bernoulli(p) are independent and ζi are independent
α-sub-exponential random variables with mean 0 and variance 1. Consider a random vector
ξ = (ξ1, · · · , ξn) with ξi = δi · ζi. Let A be an m×n fixed matrix. Then for 0 < α ≤ 2 and t ≥ 0,

P
{∣∣∥Aξ∥2 −

√
p∥A∥F

∣∣ > L2(α)t
}
≤ 2 exp

{
− c(α)min

{( t

∥A∥l2→l2

)2
,
( t

∥A∥l2→l2

)α}}
,

where L(α) = maxi ∥ζi∥Ψα and c(α) > 0 is a constant depending only on α.

REMARK 2.4. (i). In the case 0 < α ≤ 1 and p = 1, Götze et al. [13, Proposition 2.1] proved
that

P
{∣∣∥Aξ∥2 − ∥A∥F

∣∣ > L2(α)t
}

≤2 exp
{
− c(α)min

{ t2

∥A∥2−α
F ∥A∥αl2→l2

,
( t

∥A∥l2→l2

)α}}
.

Compared with their result, Theorem 5 gives an improved tail probability due to that

∥A∥2l2→l2 ≤ ∥A∥2−α
F ∥A∥αl2→l2 .

(ii). In the case α = 2 and p = 1, Rudelson and Vershynin [30, Theorem 2.1] proved that

P
{∣∣∥Aξ∥2 − ∥A∥F

∣∣ > L2(α)t
}
≤ 2 exp

{
− ct2

∥A∥2l2→l2

}
. (2.1)

Theorem 5 recovers this result in the case α = 2 and p = 1.

REMARK 2.5. When α = 2, we have the following inequality:

∥ξi∥Ψ2 ≤ ∥δi∥Ψ2∥ζi∥Ψ2 ≤ L log−1/2(1 + p−1),

where L = maxi ∥ζi∥Ψ2 . This implies that ξi is a sub-Gaussian random variable. Consequently,
we can derive a result of the same type as in Theorem 5 from (2.1).

In particular, Rudelson and Vershynin’s result gives us:

P
{∣∣∥Aξ∥22 − p∥A∥2F

∣∣ > L2t
}
≤ 2 exp

{
−c log2(1 + p−1)pt2

∥A∥2l2→l2

}
.

Compared to this result, Theorem 5 provides a better tail probability when p is close to 0. This
serves as a good example to illustrate why we study sparse Hanson-Wright type inequalities.
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3 Preliminaries

3.1 Tails and Moments

In this subsection, we first introduce the following lemma, which provides the link between Lr

estimates and tail probability inequalities. Although such type results are by now common, we
give a brief proof for the sake of reading.

LEMMA 3.1. Let ξ be a random variable such that for r ≥ r0

∥ξ∥Lr ≤
m∑
k=1

Ckr
βk + Cm+1,

where C1, · · · , Cm+1 > 0 and β1, · · · , βm > 0. Then for t > 0,

P
{
|ξ| > e(mt+ Cm+1)

}
≤ er0 exp

(
−min

{( t

C1

)1/β1 , · · · ,
( t

Cm

)1/βm
})

.

Proof. Define the following function:

f(t) := min
{( t

C1

)1/β1 , · · · ,
( t

Cm

)1/βm
}
.

If f(t) ≥ r0, then

∥ξ∥Lf(t)
≤

m∑
k=1

Ckf(t)
βk + Cm+1 ≤ mt+ Cm+1.

Hence, Markov’s inequality yields

P{|ξ| > e(mt+ Cm+1)} ≤ P{|ξ| > e∥ξ∥Lf(t)
} ≤ e−f(t).

As for f(t) < r0, we have the following trivial bound

P{|ξ| > e(mt+ Cm+1)} ≤ 1 ≤ er0e−f(t).

Hence, we have for t ≥ 0

P{|ξ| > e(mt+ Cm+1)} ≤ er0e−f(t).

The next lemma estimates the r-th moments of random linear and bilinear sums.

LEMMA 3.2 (Theorem 1.1 in [17]). Let ξ1, · · · , ξn be independent symmetric random variables
with log-convex tails, i.e., logP{|ξi| ≥ t} is a convex function for t ≥ 0. Then for r ≥ 2∥∥∥∑

i

ξi

∥∥∥
Lr

≍
(∑

i

E|ξi|r
)1/r

+
√
r
(∑

i

Eξ2i
)1/2

.
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In the following lemmas of this subsection, we assume that ξ1, · · · , ξn
i.i.d.∼ Ws(α) and A =

(aij)n×n is a fixed symmetric diagonal-free matrix. Assume further that ξ̃i is an independent copy
of ξi, 1 ≤ i ≤ n. For any 1 ≤ α ≤ 2, let α∗ be its conjugate exponent, i.e., 1/α+ 1/α∗ = 1.

LEMMA 3.3 (Theorem 6.1 in [3]). In the case 1 ≤ α ≤ 2, we have for r ≥ 2∥∥∥∑
i,j

aijξiξ̃j

∥∥∥
Lr

≍αr
1/2∥A∥F + r∥A∥l2→l2 + r1/α∥A∥lα∗ (l2)

+ r(α+2)/2α∥A∥l2→lα∗ + r2/α∥A∥lα→lα∗ ,

where ∥A∥lα∗(l2) is defined in (1.9).

LEMMA 3.4 (Example 3 in [21]). In the case 0 < α ≤ 1, we have for r ≥ 2∥∥∥∑
i,j

aijξiξ̃j

∥∥∥
Lr

≍αr
1/2∥A∥F + r∥A∥l2→l2 + r(α+2)/2α∥A∥l2→l∞ + r2/α∥A∥∞.

By employing a similar argument as in [31], we can derive the following simplified result from
Lemmas 3.3 and 3.4. For ease of reference, the proof is provided in Appendix C.

COROLLARY 1. In the case 0 < α ≤ 2, we have for r ≥ 2,∥∥∥∑
i,j

aijξiξ̃j

∥∥∥
Lr

≲α r1/2∥A∥F + r2/α∥A∥l2→l2 .

3.2 Decoupling inequality

Decoupling is a technique of replacing quadratic forms of random variables by bilinear forms.
The monograph [9] systematically studies decoupling and its applications. In this subsection, we
introduce a classic decoupling inequality as follows:

LEMMA 3.5 (Theorem 3.1.1 in [9]). Let F : R+ → R+ be a convex function and A = (aij)n×n

be a diagonal-free matrix. If {ξi, i ≤ n} is a sequence of independent random variables and ξ̃i is
an independent copy of ξi, then there exists a universal constant C such that

EF
(∣∣∑

i,j

aijξiξj
∣∣) ≤ EF

(
C
∣∣∑

i,j

aijξiξ̃j
∣∣). (3.1)

REMARK 3.1. If, moreover, A = (aij) is a symmetric diagnal-free matrix, then (3.1) can be
reversed, that is,

EF
( 1

C

∣∣∑
i,j

aijξiξ̃j
∣∣) ≤ EF

(∣∣∑
i,j

aijξiξj
∣∣).
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3.3 Contraction principle

In this subsection, we present a well-known contraction principle in Banach space. This princi-
ple enables the extension of results from Weibull random variables to α-sub-exponential random
variables.

LEMMA 3.6 (Lemma 4.6 in [25]). Let F : R+ → R+ be a convex non-decreasing function.
Assume that {ηi, i ≤ n} and {ξi, i ≤ n} are two sequences of independent symmetric random
variables such that for some constant K ≥ 1

P{|ηi| > t} ≤ KP{|ξi| > t}, i ≤ n, t > 0. (3.2)

Then, for any sequence {ai, i ≤ n} in a Banach space (A, ∥ · ∥),

EF
(∥∥ n∑

i=1

aiηi
∥∥) ≤ EF

(
K
∥∥ n∑

i=1

aiξi
∥∥).

REMARK 3.2. If {ηi, i ≤ n} and {ξi, i ≤ n} are two sequences of independent centered random
variables satisfying (3.2), the result in Lemma 3.6 is still valid by a symmetrization argument.
Indeed, let η̃i be independent copy of ηi, 1 ≤ i ≤ n. Then, Jensen inequality yields

EF
(∥∥ n∑

i=1

aiηi
∥∥) = EF

(∥∥ n∑
i=1

ai(ηi − Eη̃η̃i)
∥∥)

≤ EF
(∥∥ n∑

i=1

ai(ηi − η̃i)
∥∥) ≤ EF

(
2
∥∥ n∑

i=1

aiεiηi
∥∥),

where {εi, i ≤ n} are independent Rademacher variables. On the other hand, by the convexity of
F

EF
(
2
∥∥ n∑

i=1

aiεiηi
∥∥) ≤ EF

(
2
∥∥ n∑

i=1

aiεi(ηi − η̃i)
∥∥) ≤ EF

(
4
∥∥ n∑

i=1

aiηi
∥∥).

Hence, we have

EF
(∥∥ n∑

i=1

aiηi
∥∥) ≤ EF

(
2
∥∥ n∑

i=1

aiεiηi
∥∥) ≤ EF

(
4
∥∥ n∑

i=1

aiηi
∥∥).

3.4 Concentration inequality

In this subsection, we shall introduce Talagrand’s concentration inequality for convex Lipschitz
functions.

LEMMA 3.7 (Corollary 4.10 in [24]). Let ξ1, · · · , ξn be independent random variables such that
|ξi| ≤ K for all 1 ≤ i ≤ n. Assume that f : Rn → R is a convex and 1-Lipschitz function. Then
for t > 0

P
{∣∣f(ξ1, · · · , ξn)− Ef(ξ1, · · · , ξn)

∣∣ > Kt
}
≤ 4e−t2/4.
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3.5 The sparse Bernstein inequality

In this subsection, we introduce the following sparse Bernstein inequality in α-sub-exponential
random variables, 0 < α ≤ 1. With this property, one can estimate the diagonal sum of the
quadratic forms.

LEMMA 3.8. Assume that {δi, 1 ≤ i ≤ n} and {ζi, 1 ≤ i ≤ n} are two independent sequences
of random variables, where δi ∼ Bernoulli(pi) are independent and ζi are independent centered
α-sub-exponential random variables. Let a = (a1, · · · , an) be a fixed vector. Then for 0 < α ≤ 1
and t ≥ 0

P
{∣∣ n∑

i=1

aiδiζi
∣∣ ≥ t

}
≤ 2 exp

(
− c(α)min

{ t2

L(α)2(
∑

i a
2
i pi)

,
( t

L(α)∥a∥∞

)α})
,

where L(α) = maxi ∥ζi∥Ψα and c(α) is a positive constant depending only on α.

REMARK 3.3. (i). This property, though likely known in the literature, was explicitly stated and
proved using a combinatorial approach in He et al. (see Theorem 3 in [15]). In Appendix D we
present an alternative, more concise proof.

(ii). For 0 < α ≤ 1 and t ≥ 0, it holds (see Corollary 1.4 in [13])

P
{∣∣ n∑

i=1

aiζi
∣∣ ≥ t

}
≤ 2 exp

(
− c(α)min

{ t2

L(α)2∥a∥22
,
( t

L(α)∥a∥∞

)α})
.

Hence, Lemma 3.8 recovers this classical result when p1 = · · · = pn = 1.

4 Proofs of main results

4.1 The sparse Hanson-Wright inequality for 0 < α ≤ 2

We begin by proving Theorem 1 for the special case where matrix A has zero diagonal elements.

PROPOSITION 4.1. Assume that {δi, 1 ≤ i ≤ n} and {ζi, 1 ≤ i ≤ n} are two independent
sequences of random variables, where δi ∼ Bernoulli(pi) are independent and ζi are independent
centered α-sub-exponential random variables. Consider a random vector ξ = (ξ1, · · · , ξn) with
ξi = δi · ζi. Let A = (aij)n×n be a symmetric diagonal-free matrix. Then for 0 < α ≤ 2 and
t ≥ 0,

P{|ξ⊤Aξ| ≥ t} ≤ 2 exp
(
− c(α)min

{ t2

L(α)4
∑

i,j a
2
ijpipj

,
( t

L(α)2∥A∥l2→l2

)α/2})
,

where L(α) = maxi ∥ζi∥Ψα and c(α) is a positive constant depending only on α.

Proof. Let ξ̃i = δ̃i · ζ̃i for 1 ≤ i ≤ n, where {δ̃i, 1 ≤ i ≤ n} and {ζ̃i, 1 ≤ i ≤ n} are independent
copies of {δi, 1 ≤ i ≤ n} and {ζi, 1 ≤ i ≤ n}, respectively. Lemma 3.5 yields for r ≥ 1

∥ξ⊤Aξ∥Lr ≲ ∥ξ⊤Aξ̃∥Lr ,
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where ξ̃ = (ξ̃1, · · · , ξ̃n). Let η1, · · · , ηn
i.i.d.∼ Ws(α), 0 < α ≤ 2, and denote by η̃i the indepen-

dent copy of ηi, 1 ≤ i ≤ n. Using the conditional probability and Lemma 3.6 twice, we have for
r ≥ 1

∥ξ⊤Aξ̃/L(α)2∥Lr =
(
EξEξ̃

∣∣∣ 1

L(α)2

∑
j

ξ̃j
∑
i

aijξi

∣∣∣r)1/r
≲
(
EξEδ̃,η̃

∣∣∣ 1

L(α)

∑
j

δ̃j η̃j
∑
i

aijξi

∣∣∣r)1/r ≲ ∥∥∥∑
i,j

aijδiηiδ̃j η̃j

∥∥∥
Lr

.

Corollary 1 yields for r ≥ 2

Eη,η̃

∣∣∑
i,j

aijδiηiδ̃j η̃j
∣∣r ≤C1(α)

rrr/2
(∑

i,j

a2ijδiδ̃j

)r/2
+ C2(α)

rr2r/α∥(aijδiδ̃j)n×n∥rl2→l2
, (4.1)

where Eη,η̃ means taking expectation with respect to ηi, η̃i, 1 ≤ i ≤ n.
Let Λ = Diag(δ1, · · · , δn) be a diagonal matrix with entries δ1, · · · , δn, and Λ̃ = Diag(δ̃1, · · · , δ̃n).

As for the second term on the right side of (4.1), we have

∥(aijδiδ̃j)n×n∥l2→l2
= ∥ΛAΛ̃∥l2→l2 ≤ ∥Λ∥l2→l2∥A∥l2→l2∥Λ̃∥l2→l2 ≤ ∥A∥l2→l2 .

We next turn to bounding the first term of (4.1). Note that, f(x1, · · · , xn) =
√∑

i a
2
ix

2
i is a

convex and Lipschitz function with ∥f∥Lip = maxi |ai|. Hence, Lemma 3.7 yields for t > 0

Pδ

{∣∣∣(∑
i

δi
∑
j

a2ij δ̃j
)1/2 − Eδ

(∑
i

δi
∑
j

a2ij δ̃j
)1/2∣∣∣ > max

i
(
∑
j

a2ij δ̃j)
1/2t
}
≤ 4e−t2/4,

where Pδ and Eδ mean taking probability and expectation with respect to δ1, · · · , δn. Then, a
direct integration yields for r ≥ 1(

Eδ

∣∣(∑
i

δi
∑
j

a2ij δ̃j
)1/2∣∣r)1/r

≲Eδ

(∑
i

δi
∑
j

a2ij δ̃j
)1/2

+
√
rmax

i
(
∑
j

a2ij δ̃j)
1/2.

≤
(∑

i,j

a2ijpiδ̃j
)1/2

+
√
rmax

i
(
∑
j

a2ij)
1/2. (4.2)

It is obvious to see that

max
i

(
∑
j

a2ij)
1/2 = ∥A∥l2→l∞ ≤ ∥A∥l2→l2 .

Using Lemma 3.7 again, we have for t > 0

P
{∣∣∣(∑

i,j

a2ijpiδ̃j
)1/2 − E

(∑
i,j

a2ijpiδ̃j
)1/2∣∣∣ > max

j
(
∑
i

a2ijpi)
1/2t
}
≤ 4e−t2/4.
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Then for r ≥ 1∥∥(∑
i,j

a2ijpiδ̃j
)1/2∥∥

Lr
≲ E

(∑
i,j

a2ijpiδ̃j
)1/2

+
√
rmax

j
(
∑
i

a2ijpi)
1/2

≤
(∑

i,j

a2ijpipj
)1/2

+
√
r∥A∥l2→l2 . (4.3)

By virtue of (4.2) and (4.3), we have for r ≥ 1

√
r
∥∥(∑

i,j

a2ijδiδ̃j
)1/2∥∥

Lr
≲

√
r
(∑

i,j

a2ijpipj
)1/2

+ r∥A∥l2→l2 . (4.4)

As 0 < α ≤ 2, we can absorb the last term above with r2/α∥A∥l2→l2 . Combining (4.1) with (4.4),
we have for r ≥ 2∥∥∑

ij

aijδiηiδ̃j η̃j
∥∥
Lr

≲α

√
r
(∑

ij

a2ijpipj
)1/2

+ r2/α∥A∥l2→l2 .

Hence, we finish the proof by Lemma 3.1 and adjusting the universal constant.

Now, we are prepared to prove Theorem 1.

Proof of Theorem 1. By the triangle inequality, we have for r ≥ 1∥∥ξ⊤Aξ − Eξ⊤Aξ
∥∥
Lr

≤
∥∥∑

i ̸=j

aijξiξj
∥∥
Lr

+
∥∥∑

i

aii(ξ
2
i − Eξ2i )

∥∥
Lr
.

Proposition 4.1 yields that∥∥∑
i ̸=j

aijξiξj/L(α)
2
∥∥
Lr

≲α

√
r
(∑

i ̸=j

a2ijpipj
)1/2

+ r2/α∥A∥l2→l2 . (4.5)

Let ξ̃i be an independent copy of ξi, 1 ≤ i ≤ n. Note that∥∥∑
i

aii(ξ
2
i − Eξ2i )

∥∥
Lr

=
∥∥∑

i

aii(ξ
2
i − Eξ̃i

ξ̃2i )
∥∥
Lr

≤ 2
∥∥∑

i

aiiεiδiζ
2
i

∥∥
Lr
,

where ε1, · · · , εn is a sequence of i.i.d. Rademacher random variables. Due to that

P{|εiζ2i | > L(α)2t} ≤ P{|ζi| > L(α)
√
t} ≤ 2e−ctα/2

,

Lemma 3.8 yields that∥∥∑
i

aii(ξ
2
i − Eξ2i )/L(α)2

∥∥
Lr

≲α

√
r
(∑

i

a2iipi
)
+ r2/αmax

i
|aii|. (4.6)

By virtue of (4.5) and (4.6), we have∥∥(ξ⊤Aξ − Eξ⊤Aξ)/L(α)2
∥∥
Lr

≲α

√
r
(∑

i ̸=j

a2ijpipj +
∑
i

a2iipi
)1/2

+ r2/α∥A∥l2→l2 ,

where we use the fact maxi |aii| ≤ ∥A∥l2→l2 . Hence, the desired result follows from Lemma
3.1.
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4.2 An improved sparse Hanson-Wright inequality for 0 < α ≤ 1

We complete the proof of Theorem 2 in this subsection.

Proof of Theorem 2. We first assume aii = 0, 1 ≤ i ≤ n. By Lemmas 3.5 and 3.6, we only need
to bound the quantity ∥

∑
i,j aijδiηiδ̃j η̃j∥Lr . Here, η1, · · · , ηn

i.i.d.∼ Ws(α), and for 1 ≤ i ≤ n,
δ̃i, η̃i are independent copies of δi, ηi, respectively.

Note that, for 1 ≤ i ≤ n,

− logP{|δiηi| ≥ t} =

{
0, t = 0

tα − log pi, t > 0

is a concave function for t ≥ 0. Hence, by Lemma 3.2, we have for r ≥ 2(
Eδ,η

∣∣∑
i

δiηi
∑
j

aij δ̃j η̃j
∣∣r)1/r ≲α r

1/α
(∑

i

pi
∣∣∑

j

aij δ̃j η̃j
∣∣r)1/r

+
√
r
(∑

i

pi(
∑
j

aij δ̃j η̃j)
2
)1/2

, (4.7)

where Eδ,η means taking expectation with respect to {δi, ηi, 1 ≤ i ≤ n}.
Combining Fubini’s theorem with (4.7), we have for r ≥ 2∥∥∥∑

i,j

aijδiηiδ̃j η̃j

∥∥∥
Lr

=
(
Eδ̃,η̃Eδ,η

∣∣∑
i

δiηi
∑
j

aij δ̃j η̃j
∣∣r)1/r

≲αr
1/α
(
E
∑
i

pi
∣∣∑

j

aij δ̃j η̃j
∣∣r)1/r

+
√
r
∥∥∥(∑

i

pi(
∑
j

aij δ̃j η̃j)
2
)1/2∥∥∥

Lr

, (4.8)

where the last inequality we use the fact (a+ b)r ≤ 2r(|a|r + |b|r).
Next, we turn to the terms on the right side of (4.8). For the first term, we have(

E
∑
i

pi
∣∣∑

j

aij δ̃j η̃j
∣∣r)1/r = (∑

i

pi

∥∥∥∑
j

aij δ̃j η̃j

∥∥∥r
Lr

)1/r
≲
(∑

i

pi

((∑
j

E|aij δ̃j η̃j |r
)1/r

+
√
r
(∑

j

E|aij δ̃j η̃j |2
)1/2)r)1/r

≲α r1/α
(∑

i,j

|aij |rpipj
)1/r

+
√
r
(∑

i

pi
(∑

j

a2ijpj
)r/2)1/r

,

where we use Lemma 3.2 in the second step and use the triangle inequality in the third step.
For the second term on the right side of (4.8), note that for g1, · · · , gn

i.i.d.∼ N(0, 1) and
a1, · · · , an ∈ R ∥∥∥∑

i

aigi

∥∥∥
Lr

≍
√
r
(∑

i

a2i
)1/2

.
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Hence, we have by Lemma 3.2

E
(
r
∑
i

pi(
∑
j

aij δ̃j η̃j)
2
)r/2

≤CrEEg

(∑
i

√
pigi

∑
j

aij δ̃j η̃j

)r
=CrEEδ̃,η̃

(∑
j

δ̃j η̃j
∑
i

aij
√
pigi

)r
≤C1(α)

rE
(
rr/α

∑
j

pj
∣∣∑

i

aij
√
pigi

∣∣r + rr/2
(∑

j

pj
(∑

i

aij
√
pigi

)2)r/2)
≤C2(α)

rrr/α+r/2
∑
j

pj
(∑

i

a2ijpi
)r/2

+ C3(α)
rE
(∑

i,j

aij
√
pipjgig̃j

)r
,

where g̃j is an independent copy of gj , 1 ≤ j ≤ n. Note that gi are also sub-gaussian random
variables. Hence, we have by Corollary 1 and Lemma 3.6∥∥∥∑

i,j

aij
√
pipjgig̃j

∥∥∥
Lr

≲
√
r
(∑

i,j

a2ijpipj

)1/2
+ r∥(aij

√
pipj)n×n∥l2→l2 .

Up to now, we have proved for diagonal free symmetric matrix A∥∥∥∑
i,j

aijδiηiδ̃j η̃j

∥∥∥
Lr

≲α r
2/α
(∑

ij

|aij |rpipj
)1/r

+ r1/2+1/α
(∑

i

pi
(∑

j

a2ijpj
)r/2)1/r

+ r∥(aij
√
pipj)n×n∥l2→l2 +

√
r
(∑

i,j

a2ijpipj

)1/2
.

Note that for r ≥ 3, by Young’s inequality, we have(∑
i,j

|aij |rpipj
)1/r

≤ max
i,j

|aij |(r−2)/r ·
(∑

i,j

a2ijpipj

)1/r
=
(
e2r/(r−2)max

i,j
|aij |

)(r−2)/r
·
(∑

i,j

a2ijpipje
−2r
)1/r

≤ r − 2

r

(
e2r/(r−2)max

i,j
|aij |

)
+

2

r

(∑
i,j

a2ijpipje
−2r
)1/2

≤ e6∥A∥∞ + e−r
(∑

i,j

a2ijpipj

)1/2
.

Similarly(∑
i

pi
(∑

j

a2ijpj
)r/2)1/r ≤ e6max

i

(∑
j

a2ijpj

)1/2
+ e−r

(∑
i,j

a2ijpipj

)1/2
.

19



Note that the e−r factors we introduced will eliminate the r2/α, r1/2+1/α factors in the correspond-
ing terms. Hence, we have for r ≥ 3∥∥∥∑

i,j

aijδiηiδ̃j η̃j

∥∥∥
Lr

≲αr
2/α∥A∥∞ + r1/2+1/αmax

i

(∑
j

a2ijpj

)1/2
+ r∥(aij

√
pipj)n×n∥l2→l2 +

√
r
(∑

i,j

a2ijpipj

)1/2
. (4.9)

For a general symmetric matrix A, we only need to estimate the diagonal case. Following the
same line as in the proof of Theorem 1, we have∥∥∑

i

aii(ξ
2
i − Eξ2i )/L(α)2

∥∥
Lr

≲α

√
r
(∑

i

a2iipi
)1/2

+ r2/αmax
i

|aii|. (4.10)

Combining (4.9) with (4.10), the desired result follows from Lemma 3.1.

5 Proofs of applications

5.1 Proof of Theorem 3

Although Theorem 3 is not a literal corollary of our main theorem, its proof follows the same
roadmap we developed for Theorem 1; thus it can be viewed as an application of our techniques.
Before prove Theorem 3, we first show the following properties.

PROPOSITION 5.1. Let δ ∈ Rd and B ∈ Rd×m as in Theorem 3. Let A = Diag(a1, · · · , ad) be
a diagonal matrix. For any r ≥ 1, we have(

E∥B⊤ ·Diag(δ) ·A ·Diag(δ) ·B∥rF
)1/r

≲∥B∥l2→l2 · ∥A∥l2→l2

(
∥Diag(

√
p1, · · · ,

√
pd) ·B∥F + r1/2∥B∥l2→l2

)
.

Proof. Note that

∥B⊤ ·Diag(δ) ·A ·Diag(δ) ·B∥F
≤∥B⊤ ·Diag(δ) ·

√
A∥l2→l2 · ∥

√
A ·Diag(δ) ·B∥F

≤∥B∥l2→l2 · ∥
√
A∥l2→l2 · ∥

√
A ·Diag(δ) ·B∥F ,

where
√
A is a (complex) diagonal matrix such that

√
A ·

√
A = A. Talagrand’s concentration

inequality (Lemma 3.7) yields that

P
{∣∣∥√A ·Diag(δ) ·B∥F − E∥

√
A ·Diag(δ) ·B∥F

∣∣ > t
}

≤2 exp{− t2(
∥
√
A∥l2→l2 · ∥B∥l2→∞

)2 }.
We finish the proof due to that

E∥
√
A ·Diag(δ) ·B∥F ≤

(
E∥

√
A ·Diag(δ) ·B∥2F

)1/2
≤ ∥

√
A∥l2→l2 · ∥Diag(

√
p1, · · · ,

√
pd) ·B∥F .
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PROPOSITION 5.2. Let δ ∈ Rd and B ∈ Rd×m as in Theorem 3. For a fixed vector x ∈ Rd,
denote A = xx⊤. For any r ≥ 1, we have(

E∥B⊤ ·Diag(δ) ·A ·Diag(δ) ·B∥rF
)1/r

≲ ∥B∥2l2→l2∥x∥
2
2.

Proof.

∥B⊤ ·Diag(δ) ·A ·Diag(δ) ·B∥F
=∥B⊤ ·Diag(x) · δδ⊤ ·Diag(x) ·B∥F
=∥B⊤ ·Diag(x) · δ∥22 ≤ ∥B∥2l2→l2∥Diag(x) · δ∥22 ≤ ∥B∥2l2→l2∥x∥

2
2.

Proof of Theorem 3. For each fixed θ, we can rewrite

θ⊤(Σ̂− Σ)θ =
1

n

n∑
s=1

[
X(s)⊤Aθ,pX

(s) − E(X(s)⊤Aθ,pX
(s))
]

=
1

n

n∑
s=1

[
ξ(s)

⊤
B⊤Diag(δ(s))Aθ,pDiag(δ(s))Bξ(s) − E(X(s)⊤Aθ,pX

(s))
]

= ξ̃⊤B̃⊤Diag(δ̃)Ãθ,pDiag(δ̃)B̃ξ̃ − Eξ̃⊤B̃⊤Diag(δ̃)Ãθ,pDiag(δ̃)B̃ξ̃.

Here

ξ̃ = (ξ(1)
⊤
, · · · , ξ(n)⊤)⊤ ∈ Rmn, B̃ = Diag(B,B, · · · , B) ∈ Rdn×mn,

δ̃ = (δ(1)
⊤
, · · · , δ(n)⊤)⊤ ∈ Rdn×dn, Ãθ,p = Diag(Aθ,p, · · · , Aθ,p)/n ∈ Rdn×dn.

Hence, by virtue of the decoupling inequality and Corollary 1, we have for r ≥ 1

∥θ⊤(Σ̂− Σ)θ∥Lr ≲α ∥ξ̃⊤B̃⊤Diag(δ̃)Ãθ,pDiag(δ̃)B̃η̃∥Lr

≲α r1/2
(
E∥B̃⊤Diag(δ̃)Ãθ,pDiag(δ̃)B̃∥rF

)1/r
+ r2/α

(
E∥B̃⊤Diag(δ̃)Ãθ,pDiag(δ̃)B̃∥rl2→l2

)1/r
, (5.1)

where η̃ is an independent copy of ξ̃.
For the first term on the right-side of (5.1), we have

∥B̃⊤Diag(δ̃)Ãθ,pDiag(δ̃)B̃∥F =
( 1

n2

n∑
s=1

∥B⊤Diag(δ(s))Aθ,pDiag(δ(s))B∥2F
)1/2

Note that

Aθ,p = (θ ◦ 1

p
)(θ ◦ 1

p
)⊤ −Diag((θ ◦ 1

p
)(θ ◦ 1

p
)⊤) + Diag(Aθ,p). (5.2)

Hence, we can split the above boundary into two parts according to the division of Aθ,p, the
boundary formed by (θ ◦ 1

p)(θ ◦
1
p)

⊤ and the boundary formed by Diag(Aθ,p)−Diag((θ ◦ 1
p)(θ ◦
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1
p)

⊤). Propositions 5.1 and 5.2 yield that, ∥B⊤Diag(δ)Aθ,pDiag(δ)B∥F is a sub-gaussian random
variable with sub-gaussian norm

K1(θ) = ∥B∥l2→l2 · (Diag(
√
p1, · · · ,

√
pd) ·B∥F + ∥B∥l2→l2) · ∥(θ ◦

1

p
)(θ ◦ 1

p
)⊤∥l2→l2

= ∥B∥l2→l2 · (Diag(
√
p1, · · · ,

√
pd) ·B∥F + ∥B∥l2→l2) · ∥θ ◦

1

p
∥22

Hence, Bernstein’s inequality yields that

P
{∣∣∣ 1

n2

n∑
s=1

(
∥B⊤Diag(δ(s))Aθ,pDiag(δ(s))B∥2F−E∥B⊤Diag(δ(s))Aθ,pDiag(δ(s))B∥2F

)∣∣∣
> K1(θ)

2t
}
≤ 2 exp{−cmin{n3t2, n2t}},

implying that

(
E
( 1

n2

n∑
s=1

∥B⊤Diag(δ(s))Aθ,pDiag(δ(s))B∥2F
)r/2)2/r

≲
1

n
E∥B⊤Diag(δ(s))Aθ,pDiag(δ(s))B∥2F

+ (
r

n3
)1/2K2

1 (θ) +
r

n2
K2

1 (θ)

Hence, by virtue of (5.2), the first term on the right hand side of (5.1) can be further bounded by

(
r

n
)1/2K2(θ) + (

r

n
)3/4K1(θ) +

r

n
K1(θ),

where

K2(θ) :=
(
E∥B⊤Diag(δ(1))Aθ,pDiag(δ(1))B∥2F

)1/2
.

For the second term on the right-side of (5.1), we have

∥B̃⊤Diag(δ̃)Ãθ,pDiag(δ̃)B̃∥l2→l2 ≤ 1

n
∥B∥2l2→l2 · ∥Aθ,p∥l2→l2 .

Hence, we have for r ≥ 1

∥θ⊤(Σ̂− Σ)θ∥Lr ≲α
K2(θ)r

1/2

√
n

+
K1(θ)r

3/4

n3/4
+

K1(θ)r
2/α

n
,

implying that

P
{∣∣θ⊤(Σ̂− Σ)θ

∣∣ > t1/2√
n
sup
θ∈Ω

K2(θ) +
t3/4

n3/4
sup
θ∈Ω

K1(θ) +
t2/α

n
sup
θ∈Ω

K1(θ)
}

≤P
{∣∣θ⊤(Σ̂− Σ)θ

∣∣ > K2(θ)t
1/2

√
n

+
K1(θ)t

3/4

n3/4
+

K1(θ)t
2/α

n

}
≤ e−c(α)t,
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where c(α) is a constant only depending on α.
For the set Ω, there exists an ε-net N of Ω such that, for ε ∈ (0, 1),

|N | ≤
(
d

k

)
(1 + 2/ε)k ≤ (

ed

k
)k(

3

ε
)k ≤ (

3ed

εk
)k.

Hence, for any θ ∈ Ω, there exists a θ′ ∈ N satisfying∣∣θ⊤(Σ̂− Σ)θ
∣∣ ≤ ∣∣(θ − θ′)⊤(Σ̂− Σ)θ + θ′⊤(Σ̂− Σ)(θ − θ′)

∣∣+ ∣∣θ′⊤(Σ̂− Σ)θ′
∣∣

≤ 2ε sup
θ̃∈Ω

∣∣θ̃⊤(Σ̂− Σ)θ
∣∣+ ∣∣θ′⊤(Σ̂− Σ)θ′

∣∣.
Due to the symmetry of Σ̂− Σ, we have

θ̃⊤(Σ̂− Σ)θ =
1

4

(
(θ̃ + θ)⊤(Σ̂− Σ)(θ̃ + θ)− (θ̃ − θ)⊤(Σ̂− Σ)(θ̃ − θ)

)
.

Note that ∥θ̃ ± θ∥2 ≤ 2. Hence, we have

sup
θ∈Ω

∣∣θ⊤(Σ̂− Σ)θ
∣∣ ≤ 4ε sup

θ∈Ω

∣∣θ⊤(Σ̂− Σ)θ
∣∣+ sup

θ′∈N

∣∣θ′⊤(Σ̂− Σ)θ′
∣∣.

Taking ε = 1/16, we have

P
{3
4
sup
θ∈Ω

∣∣θ⊤(Σ̂− Σ)θ
∣∣ > t1/2√

n
sup
θ∈Ω

K2(θ) +
t3/4

n3/4
sup
θ∈Ω

K1(θ) +
t2/α

n
sup
θ∈Ω

K1(θ)
}

≤P
{

sup
θ′∈N

∣∣θ′⊤(Σ̂− Σ)θ′
∣∣ > t1/2√

n
sup
θ∈Ω

K2(θ) +
t3/4

n3/4
sup
θ∈Ω

K1(θ) +
t2/α

n
sup
θ∈Ω

K1(θ)
}

≤|N |2e−c(α)t ≤ 2 exp(−c(α)t+ k log(48ed/k))

We conclude the proof by taking t = (u+ k log(48ed/k))/c(α).

5.2 Proof of Theorem 4

Proof of Theorem 4. Let Q = [Q1, · · · , Qr] ∈ Rk×r be a random matrix with independent copies
of r−

1
2 δ ◦ ξ, where δ ∼ Bernoulli(p) and ξ is a centered sub-gaussian random variable satisfying

∥ξ∥Ψ2 ≤ 1 and Eξ2 = 1. The random variable δ is independent of ξ and 0 ≤ p ≤ 1.
Let X = UΣV ⊤ be the thin singular value decomposition of X , where U ∈ Rm×k,Σ ∈ Rk×k

and V ∈ Rn×k. Define the following matrices

UΣ1/2 = Ũ = [ũ⊤1 , · · · , ũ⊤m]⊤, V Σ1/2 = Ṽ = [ṽ⊤1 , · · · , ṽ⊤n ]⊤.

Then we have

ũiṽ
⊤
j = Xij , EũiQQ⊤ṽ⊤j = p ·Xij ,
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where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We rewrite ũiQQ⊤ṽ⊤j as a quadratic form

ũiQQ⊤ṽ⊤j = vec(Q)⊤ · (Ir ⊗ ũ⊤i ṽj) · vec(Q),

where vec(Q) = [Q⊤
1 , · · · , Q⊤

r ]
⊤ ∈ Rkr and ⊗ is the Kronecker product. Then, we have by

Theorem 1

P
{∣∣ũiQQ⊤ṽ⊤j − p ·Xij

∣∣ > t
}
≤ 2 exp

(
− cmin{ r2t2

p∥Ir ⊗ ũ⊤i ṽj∥2F
,

rt

∥Ir ⊗ ũ⊤i ṽj∥l2→l2

}
)

≤ 2 exp
(
− cmin{ rt2

p∥ũi∥22∥ṽj∥22
,

rt

∥ũi∥2∥ṽj∥2
}
)
.

To obtain the first inequality, we use the following fact:

p2
∑
i ̸=j

a2ij + p
∑
i

a2ii ≤ p
∑
i,j

a2ij .

Hence, we have for t > 0

P
{∣∣ũiQQ⊤ṽ⊤j − p ·Xij

∣∣ > ∥ũi∥2∥ṽj∥2t
}
≤ exp(−crmin{ t

2

p
, t}).

Then by the union bound, we have

P
{
max
i,j

∣∣ũiQQ⊤ṽ⊤j − p ·Xij

∣∣ > kt√
mn

√
µcolµrow · ∥X∥l2→l2

}
≤mn exp(−crmin{ t

2

p
, t}).

Assume that
r > log

mn

η
·max{ p

ct2
,
1

ct
},

then with probability at least 1− η, for 1 ≤ i ≤ m and 1 ≤ j ≤ n∣∣Xij −
1

p
ũiQQ⊤ṽ⊤j

∣∣ ≤ kt

p
√
mn

√
µcolµrow · ∥X∥l2→l2 .

The desired result follows by setting Y = (Yij) such that Yij = 1
p ũiQQ⊤ṽ⊤j .
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A Proof of Proposition 1.1

Proof. Let η̃ = (η̃1, · · · , η̃n)⊤ be an independent copy of η. Lemma 3.6 and Remark 3.2 yield for
r ≥ 1

∥η⊤Aη − Eη⊤Aη∥Lr ≍ ∥η⊤Aη̃∥Lr .

By virtue of Lemma 3.4, we have for r ≥ 2

∥η⊤Aη̃∥Lr ≍α

√
r∥A∥F + r∥A∥l2→l2

+ r1/α+1/2max
i

(∑
j

a2ij
)1/2

+ r2/α∥A∥∞ := f1(A, r).

Hence, for r ≥ 2, we have by the Paley-Zygmund inequality

P
{
|η⊤Aη − Eη⊤Aη| ≥ C1(α)

2
f1(A, r)

}
≥ P

{
|η⊤Aη̃| ≥ 1

2
∥η⊤Aη̃∥Lr

}
≥ (1− 2−r)2

( ∥η⊤Aη̃∥Lr

∥η⊤Aη̃∥L2r

)2r
≥ 1

2
e−c1(α)r,
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where in the last inequality, we use Lemma 3.4. If we lower bound e−c1(α)r by e−c1(α)(r+2), this
inequality is valid for all r ≥ 0. Hence, we have for t ≥ 0

P
{
|η⊤Aη − Eη⊤Aη| ≥ C1(α)

2
f1(A, t)

}
≥ 1

2
e−2c1(α)e−c1(α)t,

which immediately yields the desired result.

B Proof of Theorem 5

Proof of Theorem 5. Without loss of generality, we assume L(α) = 1. Note that E∥Aξ∥22 =
p∥A∥2F . Hence, Theorem 1 yields for u > 0

P
{∣∣∣∥Aξ∥22 − p∥A∥2F

∣∣∣ > t
}

≤2 exp
{
− c(α)min{ t2

p∥A⊤A∥2F
,
( t

∥A⊤A∥l2→l2

)α/2}}. (B.1)

Take t = up∥A∥2F , u ≥ 0, and note that

∥A⊤A∥F ≤ ∥A∥l2→l2∥A∥F , ∥A⊤A∥l2→l2 = ∥A∥2l2→l2 .

Then, (B.1) yields that

P
{∣∣∣∥Aξ∥22 − p∥A∥2F

∣∣∣ > up∥A∥2F
}

≤2 exp
{
− c(α)min{

u2p∥A∥2F
∥A∥2l2→l2

,
( up∥A∥2F
∥A∥2l2→l2

)α/2}}. (B.2)

Let u = max(δ, δ2), δ ≥ 0. Then, the event{∣∣∣∥Aξ∥22 − p∥A∥2F
∣∣∣ ≤ up∥A∥2F

}
implies the event {∣∣∣∥Aξ∥2 −√

p∥A∥F
∣∣∣ ≤ δ

√
p∥A∥F

}
,

due to the numeric bound max(|z − 1|, |z − 1|2) ≤ |z2 − 1|, z ≥ 0. Note that δ2 = min(u, u2),
then we have by (B.2)

P
{∣∣∣∥Aξ∥2 −√

p∥A∥F
∣∣∣ > δ

√
p∥A∥F

}
≤2 exp

{
− c(α)min{

δ2p∥A∥2F
∥A∥2l2→l2

,
(δ2p∥A∥2F
∥A∥2l2→l2

)α/2}}.
We finish the proof by taking t = δ

√
p∥A∥F .
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C Proof of Corollary 1

Proof. We first consider the case 0 < α ≤ 1. Note that

∥A∥∞ ≤ ∥A∥l2→l∞ ≤ ∥A∥l2→l2 .

Therefore, in this case, Corollary 1 can be immediately deduced from Lemma 3.4.
We next turn to the case 1 ≤ α ≤ 2. In this case, note that

∥A∥lα→lα∗ ≤ ∥A∥l2→lα∗ ≤ ∥A∥l2→l2 .

Hence, to finish the proof, it is enough to prove for 1 ≤ α ≤ 2

r1/α∥A∥lα∗ (l2) ≤ r1/2∥A∥F + r∥A∥l2→l∞ .

Define the following set for 1 ≤ α ≤ 2

I(r) := {(xij) = (ziyij) ∈ Rn×n :

n∑
i=1

|zi|α ≤ r, max
i=1,··· ,n

n∑
j=1

y2ij ≤ 1}.

We have the following relation

r1/α∥A∥lα∗ (l2) = sup
{∑

i,j

aijxij : (xij) ∈ I(r)
}
.

Indeed, on the one hand, we have

sup
(xij)∈I(r)

∑
i,j

aijziyij ≤ sup
(zi)

∑
i

zi sup
(yij)

∑
j

aijyij ≤ r1/α∥A∥lα∗ (l2).

On the other hand, letting

yij =
aij

(
∑n

j=1 a
2
ij)

1/2
, zi =

r1/α(
∑n

j=1 a
2
ij)

(α∗−1)/2

(
∑n

i=1(
∑n

j=1 a
2
ij)

α∗/2)1/α

yields the inverse inequality. Define another subset of Rn×n

I1(r) := {(xij) = (ziyij) ∈ Rn×n :
n∑

i=1

min{|zi|α, z2i } ≤ r, max
i=1,··· ,n

n∑
j=1

y2ij ≤ 1}.

Obviously, I(r) ⊂ I1(r). Given any (zi) and (yij) satisfying the conditions of I1(r), we have∣∣∑
i,j

aijziyij
∣∣ ≤ n∑

i=1

|zi|
( n∑
j=1

a2ij
)1/2( n∑

j=1

y2ij
)1/2 ≤ n∑

i=1

|zi|
( n∑
j=1

a2ij
)1/2

≤
n∑

i=1

|zi|I{|zi|≤1}
( n∑
j=1

a2ij
)1/2

+

n∑
i=1

|zi|I{|zi|>1}
( n∑
j=1

a2ij
)1/2

≤∥A∥F
( n∑
i=1

z2i I{|zi|≤1}
)1/2

+ ∥A∥l2→l∞

n∑
i=1

|zi|I{|zi|>1}

≤r1/2∥A∥F + r∥A∥l2→l∞ .

This completes the proof.
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D Proof of Lemma 3.8

Proof. Let η1, · · · , ηn
i.i.d.∼ Ws(α), 0 < α ≤ 1. Note that, for 1 ≤ i ≤ n,

− logP{|δiηi| ≥ t} =

{
0, t = 0

tα − log pi, t > 0

is a concave function for t ≥ 0. Hence, Lemma 3.2 yields for r ≥ 2∥∥∑
i

aiδiηi
∥∥
Lr

≍α r1/α
(∑

i

pi|ai|r
)1/r

+
√
r(
∑
i

pia
2
i )

1/2. (D.1)

Here, we use the fact ∥η1∥Lr ≍ r1/α. As for the first term on the right side of (D.1), we have for
r ≥ 3 (∑

i

pi|ai|r
)1/r ≤ max

i
|ai|(r−2)/r ·

(∑
i

pia
2
i

)1/r
=
(
e2r/(r−2)max

i
|ai|
)(r−2)/r ·

(∑
i

pia
2
i e

−2r
)1/r

≤ r − 2

r

(
e2r/(r−2)max

i
|ai|
)
+

2

r

(∑
i

pia
2
i e

−2r
)1/2

≤ e6∥a∥∞ + e−r
(∑

i

pia
2
i

)1/2
.

This result with (D.1) yields for r ≥ 3,∥∥∑
i

aiδiηi
∥∥
Lr

≲α

√
r(
∑
i

pia
2
i )

1/2 + r1/α∥a∥∞.

For t ≥ 0 and 1 ≤ i ≤ n, we have

P{|δiζi| ≥ L(α)t} ≤ 2P{|δ̃iηi| ≥ t},

where δ̃i is an independent copy of δi, 1 ≤ i ≤ n. Hence, Lemma 3.6 yields for r ≥ 3∥∥∑
i

aiδiζi/L(α)
∥∥
Lr

≲
∥∥∑

i

aiδ̃iηi
∥∥
Lr

≲α

√
r(
∑
i

pia
2
i )

1/2 + r1/α∥a∥∞.

Then, using Lemma 3.1 and adjusting the universal constant yield the desired result.

E Supplement to Theorem 3

In this section, we shall give a detailed expansion of E∥B⊤Diag(δ(1))Aθ,pDiag(δ(1))B∥2F appear-
ing in Theorem 3. For convenience, assume that B = (bij)d×m and Aθ,p = (aij)d×d.
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Note that

∥B⊤Diag(δ(1))Aθ,pDiag(δ(1))B∥2F =

m∑
i=1

m∑
j=1

( d∑
l=1

d∑
k=1

δlblialkδkbkj
)2

=

m∑
i=1

m∑
j=1

d∑
l=1

d∑
p=1

d∑
k=1

d∑
q=1

δlblialkδkbkjδpbpjapqδqbqj .

In order to calculate the expectation of the above random variables, we need to make the following
classifications based on whether the indicators l, p, k, and q are equal.

• All indicators are different.

I1 = {(l, p, k, q) : 1 ≤ l ̸= p ̸= k ̸= q ≤ d}.

• Only two indicators are equal.

I2 = {(l, p, k, q) : 1 ≤ l = p ̸= k ̸= q ≤ d}, I3 = {(l, p, k, q) : 1 ≤ l ̸= p = k ̸= q ≤ d},

I4 = {(l, p, k, q) : 1 ≤ l ̸= p ̸= k = q ≤ d}, I5 = {(l, p, k, q) : 1 ≤ l = k ̸= p ̸= q ≤ d},

I6 = {(l, p, k, q) : 1 ≤ l = q ̸= p ̸= k ≤ d}, I7 = {(l, p, k, q) : 1 ≤ l ̸= p = q ̸= k ≤ d}.

• Only three indicators are equal.

I8 = {(l, p, k, q) : 1 ≤ l = p = k ̸= q ≤ d}, I9 = {(l, p, k, q) : 1 ≤ q = p = k ̸= l ≤ d},

I10 = {(l, p, k, q) : 1 ≤ l = q = k ̸= p ≤ d}, I11 = {(l, p, k, q) : 1 ≤ l = p = q ̸= k ≤ d}.

• All indicators are equal.

I12 = {(l, p, k, q) : 1 ≤ l = p = q = k ≤ d}.

Hence, we have

E∥B⊤Diag(δ(1))Aθ,pDiag(δ(1))B∥2F =
m∑
i=1

m∑
j=1

12∑
w=1

Qw(i, j).
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Here,

Q1(i, j) =
∑

(l,k,p,q)∈I1

bliθlθkbkjbpjθpθqbqj , Q2(i, j) =
∑

(l,k,p,q)∈I2

1

pl
bliθlθkbkjbpjθpθqbqj ,

Q3(i, j) =
∑

(l,k,p,q)∈I3

1

pk
bliθlθkbkjbpjθpθqbqj , Q4(i, j) =

∑
(l,k,p,q)∈I4

1

pk
bliθlθkbkjbpjθpθqbqj ,

Q5(i, j) =
∑

(l,k,p,q)∈I5

bliθlθkbkjbpjθpθqbqj , Q6(i, j) =
∑

(l,k,p,q)∈I6

1

pl
bliθlθkbkjbpjθpθqbqj ,

Q7(i, j) =
∑

(l,k,p,q)∈I7

bliθlθkbkjbpjθpθqbqj , Q8(i, j) =
∑

(l,k,p,q)∈I8

1

pl
bliθlθkbkjbpjθpθqbqj ,

Q9(i, j) =
∑

(l,k,p,q)∈I9

1

pk
bliθlθkbkjbpjθpθqbqj , Q10(i, j) =

∑
(l,k,p,q)∈I10

1

pk
bliθlθkbkjbpjθpθqbqj ,

Q11(i, j) =
∑

(l,k,p,q)∈I11

1

pl
bliθlθkbkjbpjθpθqbqj , Q12(i, j) =

∑
(l,k,p,q)∈I1

1

pl
bliθlθkbkjbpjθpθqbqj .
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